On inferring noise in probabilistic seismic AVO inversion using Hierarchical Bayes

R.B. Madsen*, A. Zunino & T.M. Hansen

Niels Bohr Institute
University of Copenhagen
Seismic noise

• What is the uncertainty on seismic data?
Seismic noise

• What is the uncertainty on seismic data?
• Simple example:
Seismic noise
Seismic noise
Seismic noise
Seismic noise
Seismic noise

• What is seismic noise (uncertainty)?
 – Multiples
 – Background noise
 – Measurement errors
 – Artifacts from processing
 – Etc.

• Noise is important, yet difficult to describe
Probabilistic inverse problem

• Correct evaluation of the likelihood is essential
 – Requires a good model for the measurement and theory uncertainties
 – Assume some noise model (inferring from nearby wells?)
Inferring noise in probabilistic inversion

• Alternative approach
 – Estimate the noise as part of the inversion
 – Proposed to infer variance of noise using hierarchical Bayes inference scheme as part of the inversion1,3,4,5,6,7
Seismic noise

• Setup a simple synthetic case study to test this approach
 – Eliminate unknowns (if possible?)
 – Same forward model, same prior, etc.
 – Know the true solution (reference model)
 – Well-known (well-described) familiar test scenario

• Adapt Gaussian prior and linear seismic AVO forward model formulated from Buland & Omre (2003)²
Reference data
Stochastic model
Stochastic model

μ

C_M

m

d_{obs}

C_D

h
Sampling algorithm

- Sampling algorithm adapted from Malinverno & Briggs (2004)5
Test case 1

A common practice for inferring noise is to assume an uncorrelated noise model:

- Highest possible entropy (Unpredictability)

\[h = h_1 = \sigma_d \]

\[h_1 \sim \text{Uniform}(0.00001, 1) \]
Test cases
Results case 1

Case 1: $p(h_1|d_{obs})$
Test case 2

• Use the correct shape (same covariance) as used to generate noise

\[h = [h_1, h_2] = [\sigma_d, \sigma_T] \]

\[h_1, h_2 \sim \text{Uniform}(0.00001, 1) \]
Results case 2

Case 2: $p(h_1|d_{obs})$

Case 2: $p(h_2|d_{obs})$

Run 1 Run 2 σ_d σ_T σ_{d+T}
Summary

1. The hierarchical Bayes approach was in all cases able to accurately estimate the variance of the uncorrelated noise on the data.
2. Case 1 shows noise being fitted as data when assuming uncorrelated noise in a scenario with correlated noise.
3. Case 2 shows that it is possible to infer the variance of the noise if the correct shape is known.
4. Case 3 shows that some improvements can be gained by assuming some correlation of error. Still see biased results!
References

Test case 3

• Use the estimated shape
 – wavelet with correlation between angles

\[h = [h_1, h_2] = [\sigma_d, \sigma_W] \]

\[h_1, h_2 \sim \text{Uniform}(0.00001, 1) \]
Results case 3

Case 3: $p(h_1|d_{obs})$

Case 3: $p(h_2|d_{obs})$

Run 1 Run 2 σ_d σ_T σ_{d+T}
Log-likelihood + Cross Correlation

Case 1

Case 2
Log-likelihood + Cross Correlation

Case 3

![Graphs showing log-likelihood and cross correlation](image)
Comparison with non-hierarchical inversion

Non-hierarchical Bayesian linear AVO inversion for comparison:
Comparison with non-hierarchical inversion

Non-hierarchical Bayesian linear AVO inversion for comparison:
Comparison with non-hierarchical inversion

Non-hierarchical Bayesian linear AVO inversion for comparison: