Probabilistic Linear Inversion of Reflection Seismic Data

Rasmus Boedker Madsen

Niels Bohr Institute
University of Copenhagen

PhD Dissertation Defence, 3rd of August
Outline

Motivation
Inverse Problems
Reflection Seismic Data
PhD Work

Work Areas
Quantification of Modeling Errors
Non-stationarity of the Prior Model
Noise Model Inference as Part of the Inversion Scheme

Conclusions
Overview
Outline

Motivation

Inverse Problems
 Reflection Seismic Data
 PhD Work

Work Areas

 Quantification of Modeling Errors
 Non-stationarity of the Prior Model
 Noise Model Inference as Part of the Inversion Scheme

Conclusions

 Overview
Inverse Problems
Forward problem

▶ What is an *inverse* problem?
What is an inverse problem?

Let’s consider the opposite (i.e. the forward problem)

\[d = g(m) \]

Where \(d \) is data, \(m \) is model parameters, and \(g() \) is the relationship between \(m \) and \(d \).

In physics, \(g() \) is provided through physical models (laws).
What is an *inverse* problem?

Let’s consider the opposite (i.e. the *forward* problem)

\[d = g(m) \] \hspace{1cm} (1)

Where \(d \) is data, \(m \) is model parameters, and \(g() \) is the relationship between \(m \) and \(d \).

In physics, \(g() \) is provided through physical models (laws).

The inverse problem is the task of obtaining information about \(m \) given \(d \).
\[d = g(m) \]

- Consider going to the doctor
 - \(m \): You have some sort of sickness/disease
 - \(g() \): Your body responds to this sickness
 - \(d \): We observe this response as symptoms
Inverse Problems

Example

\[d_{\text{obs}} = g(m) + \epsilon \] \hspace{1cm} (2)

- Problem: Symptoms could be explained by different sicknesses (non-unique solution)
 - Complex interplay within the body \((g())\) is non-linear
 - There might be symptoms that unrelated to sickness (errors: \(\epsilon\))
Inverse Problems

The subsurface

\[d_{obs} = g(m) + \epsilon \] (3)

- **Problem:** Symptoms Geophysical data could be explained by different sicknesses Earth models (non-unique solution)
 - Complex interplay within the Earth \((g()\) is non-linear)
 - There might be noise sources that unrelated to the signal (errors: \(\epsilon\))
Problem: Many earth models could be explained by the same data response (non-unique solution)

Two approaches:
- Deterministic: Seek out the (a) model which best satisfies our data
 - Solved through minimization of misfit (optimization and regularization)
 - Ill-posed
- Probabilistic: Seek out an ensemble of probable models which satisfies the data
Probabilistic inverse problem → Full uncertainty characterization:

\[\sigma_m(m) = k \rho_m(m)L(m) \] (4)

where \(\sigma_m(m) \) is the posterior probability, \(\rho_m(m) \) is the prior probability, \(L(m) \) is the likelihood function and \(k \) is a normalization constant.
Inverse Problems

Probabilistic solution

- Probabilistic inverse problem \rightarrow Full uncertainty characterization:

$$\sigma_m(m) = k \rho_m(m) L(m)$$ (4)

- where $\sigma_m(m)$ is the \textit{posterior} probability, $\rho_m(m)$ is the \textit{prior} probability, $L(m)$ is the \textit{likelihood} function and k is a normalization constant.

- In general, the likelihood function is given by:

$$L(m) = \int_D d \frac{\rho_d(d) \theta(d|m)}{\mu_D(d)}$$ (5)

- where $\rho_d(d)$ reflect measurement uncertainties, $\mu_D(d)$ is the homogeneous probability density, and $\theta(d|m)$ reflect modeling uncertainties.
The posterior probability density of the model parameters \tilde{m} is described as a Gaussian probability distribution $\mathcal{N}(\tilde{m}, \tilde{C}_M)$ with mean:

$$\tilde{m} = \mu_M + (G C_M)^T C_D^{-1} (d_{\text{obs}} - G \mu_M)$$ \hspace{1cm} (6)$$

and covariance:

$$\tilde{C}_M = C_M - (G C_M)^T C_D^{-1} G C_M$$ \hspace{1cm} (7)$$

where d_{obs} is the observed data, C_M is the prior covariance, μ_M is the prior mean and C_D is the data covariance.
Outline

Motivation
Inverse Problems
Reflection Seismic Data
PhD Work

Work Areas
Quantification of Modeling Errors
Non-stationarity of the Prior Model
Noise Model Inference as Part of the Inversion Scheme

Conclusions
Overview
Reflection Seismic Data

Vessel
Reflection Seismic Data
Schematic Representation of Marine Acquisition
Reflection Seismic Data

Raw Data Example
Reflection Seismic Data

AVO/AVA Data

- Processed entity: Amplitude Versus Offset (AVO) or Amplitude Versus Angle (AVA)
Reflection Seismic Data

AVO Data Benefits

- Gives rise to the discipline of AVO analysis ("the search for bright/dim spots")
 - Zoeppritz Equations
- Use fast convolutional model as forward model in inversion
 - Linearizable
 - Computationally efficient!
- Data reduction
Outline

Motivation
 Inverse Problems
 Reflection Seismic Data
 PhD Work

Work Areas
 Quantification of Modeling Errors
 Non-stationarity of the Prior Model
 Noise Model Inference as Part of the Inversion Scheme

Conclusions
 Overview
Title: Probabilistic Linear Inversion of Reflection Seismic Data

Manifested through three work areas

- Quantification of modeling errors (using linear forward models in a non-linear system)
- Non-stationarity of the prior model
- Noise model inference as part of the inversion scheme
Outline

Motivation
 Inverse Problems
 Reflection Seismic Data
 PhD Work

Work Areas
 Quantification of Modeling Errors
 Non-stationarity of the Prior Model
 Noise Model Inference as Part of the Inversion Scheme

Conclusions
 Overview
Quantification of Modeling Errors

Problem

- Problem: Use imperfect forward model $g()$ when solving the inverse problem
- Approximative physics
 - Lack of understanding of the full problem (physics)
 - Lack of computational power
- Idea: Solve by generating a sample-based noise model which could potentially account for such errors
Consider one subsurface realization \(m \)

To generate one modeling error realization two ways of obtaining the forward response for \(m \) is compared:

- Linear (convolutional) model: \(d_{\text{conv}} = g_{\text{conv}}(m) = Gm \)
- Non-linear: \(d_{\text{nonl}} = g_{\text{nonl}}(m) \)

Modeling error: \(d_e = d_{\text{conv}} - d_{\text{nonl}} \)
Consider one subsurface realization m

To generate one modeling error realization two ways of obtaining the forward response for m is compared:

- Linear (convolutional) model: $d_{\text{conv}} = g_{\text{conv}}(m) = Gm$
- Non-linear: $d_{\text{nonl}} = g_{\text{nonl}}(m)$

Modeling error: $d_e = d_{\text{conv}} - d_{\text{nonl}}$

Sample $\rightarrow \theta(d|m) \sim N\{d_{\text{Tapp}}, C_{\text{Tapp}}\}$
Quantification of Modeling Errors

Data Covariance

- Split data covariance in measurement uncertainty and "theory" (modeling) errors
 \[C_D = C_d + C_T \]
 \((8) \)

- Use sample covariance as estimate of theory errors
 \[C_D = C_d + C_{Tapp} \]
 \((9) \)
Quantification of Modeling Errors

Theory errors

- Linearized version of Zoeppritz equations
- Processing errors
 - Raw data \rightarrow AVA data
Quantification of Modeling Errors

Prior Realizations

Realization from small-contrast model

- v_p (m s$^{-1}$)
- v_s (m s$^{-1}$)
- ρ (kg m$^{-3}$)
- AI (10^6 Pa m$^{-3}$)
- v_p/v_s
Quantification of Modeling Errors

C_{Tapp}

C_{Tapp1}: Small-contrast model
Quantification of Modeling Errors

Inversion: Gaussian Prior
Quantification of Modeling Errors

Inversion: Gaussian Prior

AVO inversion (SN = 5): $\mathbf{C}_D = \mathbf{C}_d + \mathbf{C}_{\text{App1}}$
Quantification of Modeling Errors

Prior Realizations
Quantification of Modeling Errors

C_{Tapp}
Quantification of Modeling Errors

Inversion: Non-Gaussian Prior

AVO inversion (SN = 5): $C_D = C_d$
Quantification of Modeling Errors

Inversion: Non-Gaussian Prior

AVO inversion (SN = 5): $C_D = C_d + C_{Tapp1}$
Quantification of Modeling Errors

Inversion: Non-Gaussian Prior
Quantification of Modeling Errors

Conclusions

- Even lower limit modeling errors in seismic data are important to recognize and account for (Significant for S/N < 1)
- Normally modeling errors are ignored
- Novelty: Methodology allows for quantification and estimation of modeling errors
Quantification of Modeling Errors

Conclusions

- Even lower limit modeling errors in seismic data are important to recognize and account for (Significant for S/N < 1)
- Normally modeling errors are ignored
- Novelty: Methodology allows for quantification and estimation of modeling errors
- Advantages:
 - Use 'cheap' (linear) forward, while acknowledging the more exact forward solution.
 - Independent of data
 - Gaussian description allows incorporation in linear-least squares solution
Even lower limit modeling errors in seismic data are important to recognize and account for (Significant for $S/N < 1$)

Normally modeling errors are ignored

Novelty: Methodology allows for quantification and estimation of modeling errors

Advantages:
- Use 'cheap' (linear) forward, while acknowledging the more exact forward solution.
- Independent of data
- Gaussian description allows incorporation in linear-least squares solution

Disadvantages:
- Reliant on prior model
- Lower resolution
Motivation

Inverse Problems
Reflection Seismic Data
PhD Work

Work Areas

Quantification of Modeling Errors
Non-stationarity of the Prior Model
Noise Model Inference as Part of the Inversion Scheme

Conclusions
Overview
Non-stationarity of the Prior Model

Problem

▶ Ullaberget, Svalbard, Arctic Ocean (Onshore equivalent to Barents Sea)
Non-stationarity of the Prior Model

Problem

- Statistical properties of physical parameters for rocks (acoustic impedance, density, porosity, resistivity etc.) can generally be considered to be non-stationary
Non-stationarity of the Prior Model

Problem

- Statistical properties of physical parameters for rocks (acoustic impedance, density, porosity, resistivity etc.) can generally be considered to be non-stationary
Non-stationarity of the Prior Model

Problem

▶ Inversion: \(Posterior \propto Prior \times Likelihood \)

\[
\sigma_m(m) = k \rho_m(m)L(m) \tag{10}
\]

▶ Normally assume prior model with stationary variance for whole section
▶ Idea: Estimate variance of physical parameters prior to inversion using Bayesian inference
 ▶ Maximum likelihood estimator
 ▶ Sliding window technique
▶ Use this estimate as plug-in non-stationary variance of model parameters in prior model
Non-stationarity of the Prior Model

Base Case
Non-stationarity of the Prior Model

Inference of Variance
Non-stationarity of the Prior Model

Posterior Realizations
Non-stationarity of the Prior Model

Sensitivity
Non-stationarity of the Prior Model

Real World Case - NINI
Non-stationarity of the Prior Model

Real World Case - Inversion

![Images of seismic cross sections for different cases and models](https://example.com/images)
Non-stationarity of the Prior Model

Conclusions

- Novelty: Non-stationarity coupled to the variance of the physical parameter
Conclusions

- **Novelty:** Non-stationarity coupled to the variance of the physical parameter
- **Advantages:**
 - Non-stationarity taken into account
 - Realistic posterior realizations
 - More precise predictions in scenarios with heterogeneous variance in subsurface
- **Disadvantages:**
 - Dependency in the sources of information (Use data twice)
 - Loss of degrees of freedom
 - Loss of variance in results
 - Requires good knowledge of noise
Non-stationarity of the Prior Model

Conclusions

▶ Novelty: Non-stationarity coupled to the variance of the physical parameter

▶ Advantages:
 ▶ Non-stationarity taken into account
 ▶ Realistic posterior realizations
 ▶ More precise predictions in scenarios with heterogeneous variance in subsurface

▶ Disadvantages:
 ▶ Dependency in the sources of information (Use data twice)
 ▶ Loss of degrees of freedom
 ▶ Loss of variance in results
 ▶ Requires good knowledge of noise
Outline

Motivation
- Inverse Problems
- Reflection Seismic Data
- PhD Work

Work Areas
- Quantification of Modeling Errors
- Non-stationarity of the Prior Model
 - Noise Model Inference as Part of the Inversion Scheme

Conclusions
- Overview
Noise Model Inference as Part of the Inversion Scheme

Problem

▶ Inversion: \(\text{Posterior} \propto \text{Prior} \times \text{Likelihood} \)

\[
\sigma_m(m) = k \rho_m(m) L(m)
\]

(11)

\[
L(m) = \int_D \mu_D(d) \theta(d|m)
\]

(12)

▶ Correct evaluation of the likelihood is essential
 ▶ Requires a good model for the measurement and theory uncertainties
 ▶ Assume some noise model
 ▶ Infer from nearby or similar experiments, previous experiences, general considerations, measurement equipment uncertainty \(\rightarrow \) subjective choice of noise model

▶ Problem: Tend to involve human biases
Noise Model Inference as Part of the Inversion Scheme

Problem
Noise Model Inference as Part of the Inversion Scheme

Problem

[Diagrams showing data and power spectrum analysis]
Problem: Subjective choice of noise model

Idea: Proposed to let the data "decide" what is signal and what is noise

- Hierarchical Bayesian approach
- Assigning properties of the noise model with stochastic variables (hyperparameters h)
- Include these extra variables in the inversion scheme
Noise Model Inference as Part of the Inversion Scheme

Stochastic model

Figure: The stochastic model as a directed acyclic graph. The nodes represent stochastic variables and the black arrows show probability dependencies. The orange arrow between model parameters \mathbf{m} and observed data \mathbf{d}_{obs} indicates the deterministic relationship of the forward problem.
Noise Model Inference as Part of the Inversion Scheme

Noise models

1. A common practice for inferring noise is to assume an uncorrelated noise model:
 - Highest possible entropy (unpredictability)
 - Let $\mathbf{h} = h_1 = \sigma_d$
 - $\mathbf{C}_D = h_1^2 \mathbf{C}_d$

2. Use correct shape of noise model:
 - Let $\mathbf{h} = [h_1, h_2] = [\sigma_d, \sigma_T]$
 - $\mathbf{C}_D = h_1^2 \mathbf{C}_d + h_2^2 \mathbf{C}_T$

3. Use estimate/approximate shape of noise model:
 - Let $\mathbf{h} = [h_1, h_2] = [\sigma_d, \sigma_W]$
 - $\mathbf{C}_D = h_1^2 \mathbf{C}_d + h_2^2 \mathbf{C}_W$

 - Hyperprior: $h_1, h_2 \sim \text{Uniform}(0.00001, 1)$
Noise Model Inference as Part of the Inversion Scheme

Posterior $p(\mathbf{m}|\mathbf{d}_{\text{obs}})$: Case 1
Noise Model Inference as Part of the Inversion Scheme

Posterior $p(m|d_{obs})$: Case 2
Noise Model Inference as Part of the Inversion Scheme

Posterior $p(m|d_{obs})$: Case 3
Noise Model Inference as Part of the Inversion Scheme

Hyperposteriors $p(h|d_{obs})$
Noise Model Inference as Part of the Inversion Scheme

Comparison With Best Possible Linear Inversion
Noise Model Inference as Part of the Inversion Scheme

Conclusions

- **Novelty**: Critical review of inferring the noise model as part of the inversion
 - Considering colored noise
 - The hierarchical Bayes approach was in all cases able to accurately estimate the variance of the uncorrelated noise on the data
 - Case 1 shows noise being fitted as data when assuming uncorrelated noise in a scenario with correlated noise
 - Case 2 shows that it is possible to infer the variance of the noise if the correct shape is known
 - Case 3 shows that some improvements can be gained by assuming some correlation of error. Still see biased results!
Outline

Motivation
 Inverse Problems
 Reflection Seismic Data
 PhD Work

Work Areas
 Quantification of Modeling Errors
 Non-stationarity of the Prior Model
 Noise Model Inference as Part of the Inversion Scheme

Conclusions
 Overview
Overview

- Least-squares solutions continue to be the primary tool for large scale probabilistic seismic inversion
 - Computational demands
- Improvements on currently available methods:
 - Considering likelihood models and hence noise models
 - Correlated noise
 - Modeling errors
 - Non-stationarity in prior model
 - More in accordance with the expected heterogeneous appearance of the subsurface